Recombinant Zoster Vaccine for High-risk Ageing Adults in the Netherlands: Cost-effectiveness and Value of Information Analyses

Thi Hao Pham^{1,2}, Jurjen van der Schans^{1,3}

¹Department of Health Sciences, University Medical Center Groningen, the Netherlands; ²Asc Academics, Groningen, the Netherlands; ³Department of Economics, Econometrics & Finance, University of Groningen, the Netherlands.

Introduction

Ageing adults are at risk of Herpes zoster (HZ) and its complication, postherpetic neuralgia (PHN). The disease can be prevented by Recombinant Zoster Vaccine (RZV), but a large-scale RZV program is not advisable in the Netherlands mainly due to its unfavorable cost-effectiveness.

Aims

- to estimate cost-effectiveness of high-risk and overallcohort vaccination strategies compared with nonvaccination in 70-year-old Dutch people, and
- (2) to prioritize future research addressing the uncertainty of the decision model.

Methods

The high-risk group was identified by Charlson comorbidity index (CCI).

Cost-effectiveness analysis:

- A Markov model connected with a decision tree: 20 years horizon, healthcare perspective
- Probabilistic sensitivity analysis (PSA) was conducted to address uncertainty.
- Cost-effectiveness were considered at the willingness to pay (WTP) of €20,000 and €50,000/QALY (Quality adjusted life year)

Tab 1: Input parameters of the model

Variable	Base case	SE	Distribution	
Demography				
Cohort size: 70 years old	192332			
Proportion of CCI ≥ 3	10.4%	0.026	Beta	
HZ epidemiology				
HZ incidence per 10 ⁵ person-years	1190	16.58	Beta	
Proportion of PHN (%)	5.30%	0.01	Beta	
Incidence rate ratio in CCI ≥ 3 group (reference: CCI=0)				
HZ incidence	1.402	0.036	Lognormal	
Proportion of PHN	1.733	0.168	Lognormal	
HZ hospital visit incidence	1.402	0.018	Lognormal	
HZ hospitalization incidence	2.273	0.205	Lognormal	
Utility: Quality of life depends on levels of pain				
Costs				
Outpatient (€/case)	198	18	Gamma	
Hospital admission (€/case)	3671	176	Gamma	
Hospital visit (€/case)	282			
Vaccine price (€/dose)	175.04			
Administration cost (€/dose)	11.36			

Value of information:

The PSA dataset was used to calculate over 20-year decision:

- Expected value of perfect information (EVPI) and
- Expected value of partial perfect information (EVPPI) for five groups of parameters: CCI-, incidence-, utility-, cost-, and vaccine efficacy-related groups.

Results

Cost-effectiveness analysis:

- In the base case, none of the vaccination strategies was cost-effective at the WTP=€20,000/QALY. Vaccinating highrisk group was cost-effective at the WTP=€50,000/QALY.

Tab 2: Cost-effectiveness results of the base case comparing vaccination and non-vaccination strategies in 70-year-old cohorts

Base case	Overall cohort 70	High-risk cohort 70
Cost-effectiveness ratio	€ 59,261	€ 38,428

 PSA results showed that the decision changed at the WTP= €36,000/QALY. The probability of being costeffective of vaccinating high-risk group was 75.5% at the WTP=€50,000/QALY.

Fig 1: Cost-effectiveness acceptability curves of two strategies: non-vaccination (No-Vac) and vaccination (Vac) for the high-risk group of the 70-year-old cohort.

Value of information:

- EVPI peaked of €10,704,243 at the WTP equal €36,000
- At this threshold, EVPPI was greatest for the set of parameters evaluating variables related to CCI. The value was roughly €800,000.

Fig 2: Expected value of partial perfect information (EVPPI) of five parameter groups at the WPT=€36000/QALY

Conclusion

- Vaccinating high-risk group can be cost-effective when considering WTP threshold above €36,000/QALY;
- At that threshold, more information that can eliminate all uncertainty surrounding model parameters and costs less than €10 million is worth conducting;
- Among others, addressing uncertainty of CCI-related group of parameters should be prioritized due to its highest value of information.